
CS 61A Scheme & Interpreters
Summer 2019 Guerrilla Section 4: August 2, 2019

1 Scheme
1.1 What would Scheme do?

scm> (and 0 2 200)

scm> (or True (/ 1 0))

scm> (and False (/ 1 0))

scm> (not 3)

1.2 What would Scheme display?

scm> (define a (+ 1 2))

scm> a

scm> (define b (+ (* 3 3) (* 4 4)))

scm> (+ a b)

scm> (= (modulo 10 3) (quotient 5 3))

scm> (even? (+ (- (* 5 4) 3) 2))

scm> (if (and #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> (+ 2 3) 5) (+ 1 2 3 4) (+ 3 4 (* 3 2)))

scm> ((if (< 9 3) + -) 4 100)

scm> (if 0 #t #f)
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1.3 Write two Scheme expressions that are equivalent to the following Python statement

- one defining a function directly, and the other creating an anonymous lambda that

is then bound to the name cat:

cat = lambda meow, purr: meow + purr

1.4 Spot the bug(s). Test out the code and your fixes in the scheme interpreter!

(https://scheme.cs61a.org/)

(define (sum-every-other lst)

(cond ((null? lst) lst)

(else (+ (cdr lst)

(sum-every-other (caar lst)) )))

1.5 Define sixty-ones, a funcion that takes in a list and returns the number of times

that 1 follows 6 in the list.

> (sixty-ones '(4 6 1 6 0 1))

1

> (sixty-ones '(1 6 1 4 6 1 6 0 1))

2

> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))

3

1.6 Define no-elevens, a function that takes in a number n, and returns a list of all

distinct length-n lists of 1s and 6s that do not contain two consecutive 1s.

> (no-elevens 2)

((6 6) (6 1) (1 6))

> (no-elevens 3)

((6 6 6) (6 6 1) (6 1 6) (1 6 6) (1 6 1))

> (no-elevens 4)

((6 6 6 6) (6 6 6 1) (6 6 1 6) (6 1 6 6) (6 1 6 1) (1 6 6 6) (1 6 6 1) (1 6 1 6))

1.7 Define remember, a function that takes in another zero-argument function f, and

returns another function g. When called for the first time, g will call f and pass

on its return value. When called subsequent times, g will remember its previous

return value and return it directly, without calling f again.

(Hint: look up set! in the Scheme spec!)

(define (remember f)
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)

scm> (define (f) (print "hello!") 5)

scm> (define g (remember f))

scm> (f)

hello!

5

scm> (g)

hello!

5

scm> (g)

5

Check your understanding

• How are call expressions (like (+ 1 2 3)) evaluated? What about special

forms, like (or #f #t (/ 1 0))

• What is the purpose of the quote special form?
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2 Scheme Lists
2.1 What would Scheme display?

scm> (cons 10 (cons 11))

scm> (car (cons 10 (cons 11 nil)))

scm> (cdr (cons 10 (cons 11 nil)))

scm> (cons 5 '(6 7 8))

scm> (define a 10)

a

scm> (list 8 9 a 11) ; list procedure evaluates all operands

scm> '(8 9 a 11) ; quote special form does not evaluate operand

scm> (list? (cons 1 2))

scm> (list? (cons 1 (cons 2 '())))

scm> (define null nil)

scm> (equal? null 'null)

scm> (equal? nil 'null)

scm> (equal? null 'nil)

scm> (equal? nil 'nil)

scm> (equal? 'nil ''nil)

scm> (equal? ''nil ''nil)

scm> (eq? ''nil ''nil)
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2.2 Draw out a box-and-pointer diagram for the following list:

scm> (define nested-lst (list 1 (cons 2 (cons 3 'nil)) '(4 5 6) 7))

nested-lst

Then, write out what Scheme would display for the following expressions:

scm> (cdr nested-lst)

scm> (cdr (car (cdr nested-lst)))

scm> (cons (car nested-list) (car (cdr (cdr nested-list))))

2.3 Define concat, which takes a list of lists, and constructs a list by concatenating all

the elements together into one list. Use your my-append function to concatenate

two lists.

(define (concat lsts)

)

scm> (concat '((1 4 7) '(2 5 8)))

(1 4 7 2 5 8)

scm> (concat '((1 4 7) (2 5 8) (3 6 9)))

(1 4 7 2 5 8 3 6 9)

Extra

2.4 Notice that the builtin append takes in, not a list of lists, but an arbitrary number of

lists as arguments, which it then concatenates together. Implement better-append,

which behaves in such a manner, allowing the caller to pass in an arbitrary number

of arguments. You may use concat from the previous question.

(Hint: look up “variadic functions” in the Scheme spec!)
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scm> (better-append '(1 2 3))

(1 2 3 2 3 4)

scm> (better-append '(1 2 3) '(2 3 4))

(1 2 3 2 3 4)

scm> (better-append '(1 2 3) '(2 3 4) '(3 4 5))

(1 2 3 2 3 4 3 4 5)

Check your understanding

• How can you get the third element of a Scheme list? Draw out a box-and-

pointer diagram if you aren’t sure.

• What is the difference between eq? and equal? in the context of Scheme

lists? Construct two lists lst1 and lst2 such that (equal? lst1 lst2) is #t

but (eq? lst1 lst2) is #f.
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3 Tail Recursion
3.1 For the following procedures, determine whether or not they are tail recursive. If

they are not, write why not and rewrite the function to be tail recursive on the

right.

; Multiplies x by y

(define (mult x y)

(if (= 0 y)

0

(+ x (mult x (- y 1)))))

; Always evaluates to true

; assume n is positive

(define (true1 n)

(if (= n 0)

#t

(and #t (true1 (- n 1)))))

; Always evaluates to true

; assume n is positive

(define (true2 n)

(if (= n 0)

#t

(or (true2 (- n 1)) #f)))

; Returns true if x is in lst

(define (contains lst x)

(cond

((null? lst) #f)

((equal? (car lst) x) #t)

((contains (cdr lst) x) #t)

(else #f)))
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3.2 Tail recursively implement sum-satisfied-k which, given an input list lst, a pred-

icate procedure f which takes in one argument, and an integer k, will return the

sum of the first k elements that satisfy f. If there are not k such elements, return

0.

; Doctests

scm> (define lst `(1 2 3 4 5 6))

scm> (sum-satisfied-k lst even? 2) ; 2 + 4

6

scm> (sum-satisfied-k lst (lambda (x) (= 0 (modulo x 3))) 10)

0

scm> (sum-satisfied-k lst (lambda (x) #t) 0)

0

(define (sum-satisfied-k lst f k)

)

3.3 Tail-recursively implement remove-range which, given one input list lst, and two

nonnegative integers i and j, returns a new list containing the elements of lst except

the ones from index i to index j. You may assume j > i, and j is less than the length

of the list. (Hint: you may want to use the built-in append function)

; Doctests

scm> (append '(1 2) '(3 4) '(5 6))

(1 2 3 4 5 6)

scm> (remove-range '(0 1 2 3 4) 1 3)

(0 4)

(define (remove-range lst i j)
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)

Check your understanding

• Why aren’t all subexpression evaluations tail-recursive? For instance, why

isn’t the evaluation of (+ 4 5) as part of evaluating (+ 1 (+ 2 3) (+ 4 5))

tail recursive, even though it’s the last expression in the summation?

• Given a function (f lst) that acts over a list that has a single recursive call

of the form (f (cdr lst)), what would be a general approach for rewriting

it tail-recursively?
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4 Interpreters
4.1 Determine the number of calls to scheme eval and the number of calls to scheme apply

for the following expressions. Use the visualizer at code.cs61a.org if you’re not

sure how an expression is evaluated.

> (+ 1 2)

3

> (if 1 (+ 2 3) (/ 1 0))

5

> (or #f (and (+ 1 2) 'apple) (- 5 2))

apple

> (define (add x y) (+ x y))

add

> (add (- 5 3) (or 0 2))

2

Check your understanding

• When a Scheme interpreter evaluates a combination of the form (a b c d e),

when does it evaluate a? Does it do so when a evaluates to a user-defined

function? What about a builtin procedure? What if it is a keyword for a

special form?

• What happens when we redefine a builtin procedure, like #[+]? For instance,

if we run (define + -), and then (+ 1 2), what do we get? What about if

we overwrite a keyword corresponding to a special form?

code.cs61a.org
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