
CS 61A Nonlocal, Iterators and Generators
Summer 2019 Guerrilla Section 3: July 19, 2019

1 Nonlocal
Questions

1.1 Draw an environment diagram for the following code:

spiderman = 'peter parker'

def spider(man):

def myster(io):

nonlocal man

man = spiderman

spider = lambda stark: stark(man) + ' ' + io

return spider

return myster

truth = spider('quentin is')('the greatest superhero')(lambda x: x)



2 Nonlocal, Iterators and Generators

1.2 Draw an environment diagram for the following code:

fa = 0

def fi(fa):

def world(cup):

nonlocal fa

fa = lambda fi: world or fa or fi

world = 0

if (not cup) or fa:

fa(2022)

fa, cup = world + 2, fa

return cup(fa)

return fa(cup)

return world

won = lambda opponent, x: opponent(x)

us = won(fi(fa), 2019)



Nonlocal, Iterators and Generators 3

1.3 Write make max finder, which takes in no arguments but returns a function which

takes in a list. The function it returns should return the maximum value it’s been

called on so far, including the current list and any previous list. You can assume

that any list this function takes in will be nonempty and contain only non-negative

values.

def make_max_finder():

"""

>>> m = make_max_finder()

>>> m([5, 6, 7])

7

>>> m([1, 2, 3])

7

>>> m([9])

9

>>> m2 = make_max_finder()

>>> m2([1])

1

"""

|\begin{solution}

\begin{verbatim}

max_so_far = 0

def find_max_overall(lst):

nonlocal max_so_far

if max(lst) > max_so_far:

max_so_far = max(lst)

return max_so_far

return find_max_overall

\end{verbatim}

\end{solution}|



4 Nonlocal, Iterators and Generators

1.4 Check your understanding:

x = 5

def f(x):

def g(s):

def h(h):

nonlocal x

x = x + h

return x

nonlocal x

x = x + x

return h

print(x)

return g

t = f(7)(8)(9)

a. What is t after the code is executed?

b. In the h frame, which x is being referenced? Which frame?

c. In the g frame, is a new variable x being created?



Nonlocal, Iterators and Generators 5

2 Iterators and Generators
Questions

2.1 What is the definition of an iterable? What is the definition of an iterator? What

is the definition of a generator? What built-in functions or keywords are associated

with each. Give an example of each.

2.2 Evaluate if each line is valid? If not, state the error and how you would fix it.

>>> new_list = [2, 3, 6, 8, 8, 3]

>>> next(new_list)

>>> iter(new_list)[1]

>>> [x for x in iter(new_list)]

>>> for i in range(len(iter(new_list))):

... new_list.append(2)



6 Nonlocal, Iterators and Generators

2.3 What is the difference between these two statements?

a. def infinity1(start):

while True:

start = start + 1

return start

b. def infinity2(start):

while True:

start = start + 1

yield start

|\begin{solution}

(a)is a function since it uses a return statement. Even tho while True is always true, it will stop

after the first iteration when it returns start.

On the other hand, (b) is a generator since it uses a yield statement. Since while True is always

true, calling next will iterate once and yield start

\end{solution}|

What would python display?

>>> infinity1

|\begin{solution}

<Function>

\end{solution}|

>>> infinity2

|\begin{solution}

<Function>

\end{solution}|

>>> infinity1(2)

|\begin{solution}

3

\end{solution}|

>>> infinity2(2)

|\begin{solution}

<Generator Instance>

\end{solution}|

>>> x = infinity1(2)

|\begin{solution}

Nothing

\end{solution}|

>>> next(x)

|\begin{solution}

Error, cant call next on integer

\end{solution}|

>>> y = infinity2(2)

|\begin{solution}

Nothing

\end{solution}|



Nonlocal, Iterators and Generators 7

>>> next(y)

|\begin{solution}

3

\end{solution}|

>>> next(y)

|\begin{solution}

4

\end{solution}|

>>> next(infinity2(2))

|\begin{solution}

3

\end{solution}|



8 Nonlocal, Iterators and Generators

2.4 They can’t stop all of us!!! Write a function generate constant which, a generator

function that repeatedly yields the same value forever.

def generate_constant(x):

"""A generator function that repeats the same value x forever.

>>> area = generate_constant(51)

>>> next(area)

51

>>> next(area)

51

>>> sum([next(area) for _ in range(100)])

5100

"""

2.5 4.2 Now implement black hole , a generator that yields items in seq until one of

them matches trap, in which case that value should be repeated yielded forever.

You may assume that generate constant works. You may not index into or slice

seq.

def black_hole(seq, trap):

"""A generator that yields items in SEQ until one of them matches TRAP, in which case that

value should be repeatedly yielded forever.

>>> trapped = black_hole([1, 2, 3], 2)

>>> [next(trapped) for _ in range(6)]

[1, 2, 2, 2, 2, 2]

>>> list(black_hole(range(5), 7))

[0, 1, 2, 3, 4]

"""



Nonlocal, Iterators and Generators 9

2.6 What Would Python Display?

>>> def weird_gen(x):

... if x % 2 == 0:

... yield x * 2

>>> wg = weird_gen(2)

>>> next(wg)

>>> next(weird_gen(2))

|\begin{solution}

4

4

\end{solution}|

>>> next(wg)

|\begin{solution}

StopIteration

\end{solution}|

>>> def greeter(x):

... while x % 2 != 0:

... print('hi')

... yield x

... print('bye')

>>> greeter(5)

|\begin{solution}

<Generator Object>

\end{solution}|

>>> gen = greeter(5)

>>> g = next(gen)

|\begin{solution}

hi

\end{solution}|

>>> g = (g, next(gen))

>>> g

|\begin{solution}

bye

hi

(5, 5)

\end{solution}|

>>> next(gen)

|\begin{solution}

bye



10 Nonlocal, Iterators and Generators

hi

5

\end{solution}|

>>> next(g)

|\begin{solution}

Error, tuple is not iterator

\end{solution}|

An iterator ______________________ a generator

A generator is a(n) ______________________ iterator

|\begin{solution}

An iterator is not always represented by a generator

A generator is a(n) a special type of/user defined iterator

\end{solution}|



Nonlocal, Iterators and Generators 11

2.7 Write a generator function gen inf that returns a generator which yields all the

numbers in the provided list one by one in an infinite loop.

>>> t = gen_inf([3, 4, 5])

>>> next(t)

3

>>> next(t)

4

>>> next(t)

5

>>> next(t)

3

>>> next(t)

4

def gen_inf(lst):



12 Nonlocal, Iterators and Generators

2.8 Implement a generator function called filter(iterable, fn) that only yields ele-

ments of iterable for which fn returns True.

def naturals():

i = 1

while True:

yield i

i += 1

def filter(iterable, fn):

"""

>>> is_even = lambda x: x % 2 == 0

>>> list(filter(range(5), is_even))

[0 , 2 , 4]

>>> all_odd = (2*y-1 for y in range (5))

>>> list(filter(all_odd, is_even))

[]

>>> s = filter(naturals(), is_even)

>>> next(s)

2

>>> next(s)

4

"""

2.9 What could you use a generator for that you could not use a standard iterator

paired with a function for?



Nonlocal, Iterators and Generators 13

2.10 Define tree sequence, a generator that iterates through a tree by first yielding the

root value and then yielding the values from each branch.

def tree_sequence(t):

"""

>>> t = tree(1, [tree(2, [tree(5)]), tree(3, [tree(4)])])

>>> print(list(tree_sequence(t)))

[1, 2, 5, 3, 4]

"""



14 Nonlocal, Iterators and Generators

2.11 Write a function make digit getter that, given a positive integer n, returns a

new function that returns the digits in the integer one by one, starting from the

rightmost digit.

Once all digits have been removed, subsequent calls to the function should return

the sum of all the digits in the original integer.

def make_digit_getter(n):

""" Returns a function that returns the next digit in n

each time it is called, and the total value of all the integers

once all the digits have been returned.

>>> year = 8102

>>> get_year_digit = make_digit_getter(year)

>>> for _ in range(4):

... print(get_year_digit())

2

0

1

8

>>> get_year_digit()

11

"""



Nonlocal, Iterators and Generators 15

2.12 Sorry another environment diagram, but it’s the last one I promise.

def iter(iterable):

def iterator(msg):

nonlocal iterable

if msg == 'next':

next = iterable[0]

iterable = iterable[1:]

return next

elif msg == 'stop':

raise StopIteration

return iterator

def next(iterator):

return iterator('next')

def stop(iterator):

iterator('stop')

lst = [1, 2, 3]

iterator = iter(lst)

elem = next(iterator)


	Nonlocal
	Iterators and Generators

