
CS 61A Final Review
Summer 2019 Discussion 12: August 13, 2019

1 Mutation
1.1 For each row below, fill in the blanks in the output displayed by the interactive

Python interpreter when the expression is evaluated. Expressions are evaluated in

order, and expressions may affect later expressions.

>>> cats = [1, 2]

>>> dogs = [cats, cats.append(23), list(cats)]

>>> cats

>>> dogs[1] = list(dogs)

>>> dogs[1]

>>> dogs[0].append(2)

>>> cats

>>> cats[1::2]

>>> cats[:3]

>>> dogs[2].extend([list(cats).pop(0), 3])

>>> dogs[3]

>>> dogs



2 Final Review

2 Recursion
2.1 (Adapted from Fall 2013) Fill in the blanks in the implementation of paths, which

takes as input two positive integers x and y. It returns a list of paths, where

each path is a list containing steps to reach y from x by repeated incrementing or

doubling For instance, we can reach 9 from 3 by incrementing to 4, doubling to 8,

then incrementing again to 9, so one path is [3, 4, 8, 9]

def paths(x, y):

"""Return a list of ways to reach y from x by repeated

incrementing or doubling.

>>> paths(3, 5)

[[3, 4, 5]]

>>> sorted(paths(3, 6))

[[3, 4, 5, 6], [3, 6]]

>>> sorted(paths(3, 9))

[[3, 4, 5, 6, 7, 8, 9], [3, 4, 8, 9], [3, 6, 7, 8, 9]]

>>> paths(3, 3) # No calls is a valid path

[[3]]

"""

if _________________________:

return ______________________________________________

elif _______________________:

return ______________________________________________

else:

a = _________________________________________________

b = _________________________________________________

return ______________________________________________



Final Review 3

3 Trees
3.1 Implement long paths, which returns a list of all paths in a tree with length at least

n. A path in a tree is a linked list of node values that starts with the root and ends

at a leaf. Each subsequent element must be from a child of the previous value’s

node. The length of a path is the number of edges in the path (i.e. one less than

the number of nodes in the path). Paths are listed in order from left to right. See

the doctests for some examples.

def long_paths(tree, n):

"""Return a list of all paths in tree with length at least n.

>>> t = Tree(3, [Tree(4), Tree(4), Tree(5)])

>>> left = Tree(1, [Tree(2), t])

>>> mid = Tree(6, [Tree(7, [Tree(8)]), Tree(9)])

>>> right = Tree(11, [Tree(12, [Tree(13, [Tree(14)])])])

>>> whole = Tree(0, [left, Tree(13), mid, right])

>>> for path in long_paths(whole, 2):

... print(path)

...

<0 1 2>

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 6 9>

<0 11 12 13 14>

>>> for path in long_paths(whole, 3):

... print(path)

...

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 11 12 13 14>

>>> long_paths(whole, 4)

[Link(0, Link(11, Link(12, Link(13, Link(14)))))]

"""



4 Final Review

4 Streams
4.1 Write a function merge that takes 2 sorted streams s1 and s2, and returns a new

sorted stream which contains all the elements from s1 and s2.

Assume that both s1 and s2 have infinite length.

(define (merge s1 s2)

(if _________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________))

4.2 (Adapted from Fall 2014) Implement cycle which returns a stream repeating the

digits 1, 3, 0, 2, and 4, forever. Write cons-stream only once in your solution!

Hint: (3+2) % 5 == 0.

(define (cycle start)

______________________________________________________________________________)



Final Review 5

5 Generators
5.1 Implement accumulate, which takes in an iterable and a function f and yields

each accumulated value from applying f to the running total and the next element.

from operator import add, mul

def accumulate(iterable, f):

"""

>>> list(accumulate([1, 2, 3, 4, 5], add))

[1, 3, 6, 10, 15]

>>> list(accumulate([1, 2, 3, 4, 5], mul))

[1, 2, 6, 24, 120]

"""

it = iter(iterable)

______________________________________________________________________________

______________________________________________________________________________

for __________________________________________________________________________:

__________________________________________________________________________

__________________________________________________________________________



6 Final Review

5.2 Implement sum paths gen, which takes in a Tree instance t and and returns a gen-

erator which yields the sum of all the nodes from a path from the root of a tree to

a leaf.

You may yield the sums in any order.

def sum_paths_gen(t):

"""

>>> t1 = Tree(5)

>>> next(sum_paths_gen(t1))

5

>>> t2 = Tree(1, [Tree(2, [Tree(3), Tree(4)]), Tree(9)])

>>> sorted(sum_paths_gen(t2))

[6, 7, 10]

"""

if ___________________________:

yield ____________________

for __________________________:

for __________________________:

yield ____________________



Final Review 7

6 Macros
6.1 Using macros, let’s make a new special form, when, that has the following structure:

(when <condition>

(<expr1> <expr2> <expr3> ...))

If the condition is not false (a truthy expression), all the subsequent operands are

evaluated in order and the value of the last expression is returned. Otherwise, the

entire when expression evaluates to okay.

scm> (when (= 1 0) ((/ 1 0) 'error))

okay

scm> (when (= 1 1) ((print 6) (print 1) 'a))

6

1

a

(a) Fill in the skeleton below to implement this without using quasiquotes.

(define-macro (when condition exprs)

(list 'if_______________________________________________________________________________))

(b) Now, implement the macro using quasiquotes.

(define-macro (when condition exprs)

`(if ___________________________________________________________________________________))

6.2 Write a macro that takes in a call expression and strips out every other argument.

The first argument is kept, the second is removed, and so on. You may find it

helpful to write a helper function.

(define-macro (prune-expr expr)

scm> (prune-expr (+ 10))

10

scm> (prune-expr (+ 10 100))

10

scm> (prune-expr (+ 10 100 1000))

1010

scm> (prune-expr (prune-expr (+ 10 100) 'garbage))

10


	Mutation
	Recursion
	Trees
	Streams
	Generators
	Macros

