
CS 61A SQL
Summer 2019 Discussion 11: August 8, 2019

1 Introduction
SQL is an example of a declarative programming language. Statements do not de-

scribe computations directly, but instead describe the desired result of some com-

putation. It is the role of the query interpreter of the database system to plan and

perform a computational process to produce such a result.

In SQL, data is organized into tables. A table has a fixed number of named

columns. A row of the table represents a single data record and has one value for

each column. For example, we have a table named records that stores information

about the employees at a small company1. Each of the eight rows represents an

employee.

records
Name Division Title Salary Supervisor

Ben Bitdiddle Computer Wizard 60000 Oliver Warbucks

Alyssa P Hacker Computer Programmer 40000 Ben Bitdiddle

Cy D Fect Computer Programmer 35000 Ben Bitdiddle

Lem E Tweakit Computer Technician 25000 Ben Bitdiddle

Louis Reasoner Computer Programmer Trainee 30000 Alyssa P Hacker

Oliver Warbucks Administration Big Wheel 150000 Oliver Warbucks

Eben Scrooge Accounting Chief Accountant 75000 Oliver Warbucks

Robert Cratchet Accounting Scrivener 18000 Eben Scrooge

2 Creating Tables
We can use a SELECT statement to create tables. The following statement creates a

table with a single row, with columns named “first” and “last”:

sqlite> SELECT "Ben" AS first, "Bitdiddle" AS last;

Ben|Bitdiddle

Given two tables with the same number of columns, we can combine their rows into

a larger table with UNION:

sqlite> SELECT "Ben" AS first, "Bitdiddle" AS last UNION

...> SELECT "Louis", "Reasoner";

Ben|Bitdiddle

Louis|Reasoner

1Example adapted from Structure and Interpretation of Computer Programs

2 SQL

To save a table, use CREATE TABLE and a name. Here we’re going to create the table

of employees from the previous section and assign it to the name records:

sqlite> CREATE TABLE records AS

...> SELECT "Ben Bitdiddle" AS name, "Computer" AS division,

...> "Wizard" AS title, 60000 AS salary,

...> "Oliver Warbucks" AS supervisor UNION

...> SELECT "Alyssa P Hacker", "Computer",

...> "Programmer", 40000, "Ben Bitdiddle" UNION ... ;

We can SELECT specific values from an existing table using a FROM clause. This

query creates a table with two columns, with a row for each row in the records

table:

sqlite> SELECT name, division FROM records;

Alyssa P Hacker|Computer

Ben Bitdiddle|Computer

Cy D Fect|Computer

Eben Scrooge|Accounting

Lem E Tweakit|Computer

Louis Reasoner|Computer

Oliver Warbucks|Administration

Robert Cratchet|Accounting

The special syntax SELECT * will select all columns from a table. It’s an easy way

to print the contents of a table.

sqlite> SELECT * FROM records;

Alyssa P Hacker|Computer|Programmer|40000|Ben Bitdiddle

Ben Bitdiddle|Computer|Wizard|60000|Oliver Warbucks

Cy D Fect|Computer|Programmer|35000|Ben Bitdiddle

Eben Scrooge|Accounting|Chief Accountant|75000|Oliver Warbucks

Lem E Tweakit|Computer|Technician|25000|Ben Bitdiddle

Louis Reasoner|Computer|Programmer Trainee|30000|Alyssa P Hacker

Oliver Warbucks|Administration|Big Wheel|150000|Oliver Warbucks

Robert Cratchet|Accounting|Scrivener|18000|Eben Scrooge

We can choose which columns to show in the first part of the SELECT, we can filter

out rows using a WHERE clause, and sort the resulting rows with an ORDER BY clause.

In general the syntax is:

SELECT [columns] FROM [tables]

WHERE [condition] ORDER BY [criteria];

For instance, the following statement lists all information about employees with the

“Programmer” title.

sqlite> SELECT * FROM records WHERE title = "Programmer";

Alyssa P Hacker|Computer|Programmer|40000|Ben Bitdiddle

Cy D Fect|Computer|Programmer|35000|Ben Bitdiddle

The following statement lists the names and salaries of each employee under the

accounting division, sorted in descending order by their salaries.

SQL 3

sqlite> SELECT name, salary FROM records

...> WHERE division = "Accounting" ORDER BY -salary;

Eben Scrooge|75000

Robert Cratchet|18000

Note that all valid SQL statements must be terminated by a semicolon (;). Addi-

tionally, you can split up your statement over many lines and add as much whites-

pace as you want, much like Scheme. But keep in mind that having consistent

indentation and line breaking does make your code a lot more readable to others

(and your future self)!

Questions
Our tables:

records: Name Division Title Salary Supervisor

2.1 Write a query that outputs the names of employees that Oliver Warbucks directly

supervises.

2.2 Write a query that outputs all information about employees that supervise them-

selves.

2.3 Write a query that outputs the names of all employees with salary greater than

50,000 in alphabetical order.

3 Joins
Suppose we have another table meetings which records the divisional meetings.

meetings

Division Day Time

Accounting Monday 9am

Computer Wednesday 4pm

Administration Monday 11am

Administration Wednesday 4pm

Data are combined by joining multiple tables together into one, a fundamental

operation in database systems. There are many methods of joining, all closely

related, but we will focus on just one method (the inner join) in this class.

When tables are joined, the resulting table contains a new row for each combination

of rows in the input tables. If two tables are joined and the left table has m rows

and the right table has n rows, then the joined table will have mn rows. Joins are

expressed in SQL by separating table names by commas in the FROM clause of a

SELECT statement.

4 SQL

sqlite> SELECT name, day FROM records, meetings;

Ben Bitdiddle | Monday

Ben Bitdiddle | Wednesday

...

Alyssa P Hacker | Monday

...

Tables may have overlapping column names, and so we need a method for disam-

biguating column names by table. A table may also be joined with itself, and so we

need a method for disambiguating tables. To do so, SQL allows us to give aliases

to tables within a FROM clause using the keyword AS and to refer to a column within

a particular table using a dot expression. In the example below we find the name

and title of Louis Reasoner’s supervisor.

sqlite> SELECT b.name, b.title FROM records AS a, records AS b

...> WHERE a.name = "Louis Reasoner" AND

...> a.supervisor = b.name;

Alyssa P Hacker | Programmer

Questions
Our tables:

records: Name Division Title Salary Supervisor

meetings: Division Day Time

3.1 Write a query that outputs the meeting days and times of all employees directly

supervised by Oliver Warbucks.

3.2 Write a query that outputs the names of employees whose supervisor is in a different

division.

SQL 5

3.3 Write a query that outputs the names of all pairs of employees that have a meeting

at the same time. Make sure that if A|B appears in your output, B|A does not

appear as well (A|A and B|B should additionally not appear).

3.4 (Extra question) Will the statement above filter out all redundant output in all

cases? Why or why not?

4 Aggregation
So far, we have joined and manipulated individual rows using SELECT statements.

But we can also perform aggregation operations over multiple rows with the same

SELECT statements.

We can use the MAX, MIN, COUNT, and SUM functions to retrieve more information

from our initial tables.

If we wanted to find the name and salary of the employee who makes the most

money, we might say

sqlite> SELECT name, MAX(salary) FROM records;

Oliver Warbucks|150000

Using the special COUNT(*) syntax, we can count the number of rows in our table

to see the number of employees at the company.

sqlite> SELECT COUNT(*) from RECORDS;

9

These commands can be performed on specific sets of rows in our table by using

the GROUP BY [column name] clause. This clause takes all of the rows that have the

same value in column name and groups them together.

We can find the miniumum salary earned in each division of the company.

sqlite> SELECT division, MIN(salary) FROM records GROUP BY division;

Computer|25000

Administration|25000

Accounting|18000

6 SQL

These groupings can be additionally filtered by the HAVING clause. In contrast to

the WHERE clause, which filters out rows, the HAVING clause filters out entire groups.

To find all titles that are held by more than one person, we say

sqlite> SELECT title FROM records GROUP BY title HAVING count(*) > 1;

Programmer

Questions
Our tables:

records: Name Division Title Salary Supervisor

meetings: Division Day Time

4.1 Write a query that outputs each supervisor and the sum of salaries of all the em-

ployees they supervise.

4.2 Write a query that outputs the days of the week for which fewer than 5 employees

have a meeting. You may assume no department has more than one meeting on a

given day.

4.3 Write a query that outputs all divisions for which there is more than one employee,

and all pairs of employees within that division have a salary less than 100,000.

SQL 7

5 Modifying Tables
Tables don’t need to begin fully formed, it’s possible to update them after creation!

We’ll also introduce this alternative syntax for creating a table, which creates an

empty table with the given columns:

CREATE TABLE [table]([column1], [column2] DEFAULT [val], ...);

The optional DEFAULT keyword denotes default values for a given column if they’re

not specified. This will be relevant when we insert new elements into our table. To

add a new table entries, use the INSERT INTO statement:

INSERT INTO [table] ([column1], [column2], ...)

VALUES ([value1], [value2], ...), ([value1], [value2], ...);

A couple of notes:

• If a value is specified for each column of the table, you don’t need to specify

column names. This is because each value matches up with a column, so

there’s no ambiguity.

• For columns where a value is not specified, the default value will be used if

available. If not a default value was not provided, that column in the new row

will be left empty!

Here’s an example of insertion into an empty table:

sqlite> CREATE TABLE dogs(name, age, phrase DEFAULT "woof");

sqlite> INSERT INTO dogs(name, age) VALUES ("Fido", 1), ("Sparky", 2);

sqlite> INSERT INTO dogs VALUES ("Lassie", 2, "I'll save you!"), ("Floofy", 3);

Error: all VALUES must have the same number of terms

sqlite> INSERT INTO dogs VALUES ("Lassie", 2, "I'll save you!"), ("Floofy", 3, "Much doge");

sqlite> SELECT * FROM dogs;

Fido|1|woof

Sparky|2|woof

Lassie|2|I'll save you!

Floofy|3|Much doge

The INSERT INTO statement can also insert a table returned by a SELECT statement,

in which case the syntax is:

INSERT INTO [table] ([column1], [column2], ...)

SELECT ...;

We can update certain existing entries in a table using UPDATE:

UPDATE [table] SET [column1] = [value1], [column2] = [value2], ... WHERE [condition];

All rows matching the condition will have their columns updated. If no condition

is specified, all rows will be updated! We can also remove certain entries in a table

using DELETE:

DELETE FROM [table] WHERE [condition];

8 SQL

Just like with UPDATE, if no condition is specified, all rows will be deleted! Here’s

an example using all of the above:

sqlite> UPDATE dogs SET age=age+1; -- If condition isn't specified, every row is updated

sqlite> SELECT * FROM dogs;

Fido|2|woof

Sparky|3|woof

Lassie|3|I'll save you!

Floofy|4|Much doge

sqlite> UPDATE dogs SET phrase = "bark" WHERE age=2;

sqlite> SELECT * FROM dogs WHERE age=2;

Fido|2|bark

sqlite> DELETE FROM dogs WHERE age=3;

sqlite> SELECT * FROM dogs;

Fido|2|bark

Floofy|4|Much doge

Finally, we can delete an entire table using the DROP TABLE [table] statement. In

this example, the .schema statement shows us a list of the current tables, along

with their column names.

sqlite> .schema

CREATE TABLE dogs(name, age, phrase DEFAULT "woof");

sqlite> DROP TABLE dogs;

sqlite> .schema

sqlite> -- Nothing displayed above

Questions
Our tables:

dogs: Name Age Phrase, DEFAULT=“woof”

5.1 What would SQL display? Keep track of the contents of the table after

every statement below. Write Error if you think a statement would cause an

error.

sqlite> SELECT * FROM dogs;

Fido|1|woof

Sparky|2|woof

Lassie|2|I'll save you!

Floofy|3|Much doge

sqlite> INSERT INTO dogs(age, name) VALUES ("Rover", 3);

sqlite> SELECT * FROM dogs;

SQL 9

sqlite> UPDATE dogs SET name=age, age=name WHERE name=3;

sqlite> SELECT * FROM dogs;

sqlite> UPDATE dogs SET phrase="Hi there!" WHERE name LIKE "F%";

sqlite> SELECT * FROM dogs;

sqlite> DELETE FROM dogs WHERE age < 3;

sqlite> SELECT * FROM dogs;

sqlite> INSERT INTO dogs VALUES ("Spot", 2), ("Buster", 4);

sqlite> INSERT INTO dogs(name, phrase) VALUES ("Spot", "bark"), ("Buster", "barkbark");

sqlite> SELECT * FROM dogs;

sqlite> INSERT INTO dogs(name, age) SELECT name, phrase from dogs where age = 3;

sqlite> DELETE FROM dogs WHERE phrase != "woof";

sqlite> SELECT * FROM dogs;

10 SQL

6 Extra Questions
Use the following table called courses for the questions below:

courses
Professor Course Semester

Dan Garcia CS 61C Sp19

John DeNero CS 61A Fa18

Dan Garcia CS 10 Fa18

Josh Hug CS 61B Sp18

John DeNero CS 61A Sp18

John DeNero CS 61A Fa17

Paul Hilfinger CS 61A Fa17

Paul Hilfinger CS 61A Sp17

John DeNero Data 8 Sp17

Josh Hug CS 61B Sp17

Satish Rao CS 70 Sp17

Nicholas Weaver CS 61C Sp17

Gerald Friedland CS 61C Sp17
...

...
...

6.1 Create a table called num_taught that contains three columns: professor, the

course they taught, and the number of times they taught each course.

6.2 Write a query that outputs two professors and a course if they have taught that

course the same number of times. You may use the num taught table you created

in the previous question.

6.3 Write a query that outputs two professors if they co-taught (taught the same course

at the same time) the same course more than once.

	Introduction
	Creating Tables
	Joins
	Aggregation
	Modifying Tables
	Extra Questions

