CS 61A Macros & Tail Calls
Summer 2019 Discussion 9: August 1, 2019

1 Tail-Call Optimization

Scheme implements tail-call optimization, which allows programmers to write re-
cursive functions that use a constant amount of space. A tail call occurs when a
function calls another function as its last action of the current frame. In this
case, the frame is no longer needed, and we can remove it from memory. In other
words, if this is the last thing you are going to do in a function call, we can reuse

the current frame instead of making a new frame.
Consider this implementation of factorial.

(define (fact n)
(if (=n 0)
1
(x n (fact (- n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated.
After calling (fact (- n 1)), the function still needs to multiply that result with
n. The final expression that is evaluated is a call to the multiplication function, not

fact itself. Therefore, the recursive call is not a tail call.

We can rewrite this function using a helper function that remembers the temporary

product that we have calculated so far in each recursive step.

(define (fact n)
(define (fact-tail n result)
(if (=n Q)
result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail, and that recursive call is the
last expression to be evaluated, so it is a tail call. Therefore, fact-tail is a tail
recursive process. We say that a recursive function is tail recursive if all of its

recursive calls are tail calls.

Using a constant number of frames

Tail recursive processes can use a constant amount of memory because each recursive

call frame does not need to be saved.

Our original implementation of fact required the program to keep each frame open
because the last expression multiplies the recursive result with n. Therefore, at each

frame, we need to remember the current value of n.

1.1

2 Macros & Tail Calls

In contrast, the tail recursive fact-tail does not require the interpreter to remem-
ber the values for n or result in each frame. Instead, we can just update the value
of n and result of the current frame! Therefore, we can keep reusing a single frame
to complete this calculation.

Tail context

When trying to identify whether a given function call within the body of a function
is a tail call, we look for whether the call expression is in tail context.

Given that each of the following expressions is the last expression in the body of

the function, the following expressions are tail contexts:
e the second or third operand in an if expression

e any of the non-predicate sub-expressions in a cond expression (i.e. the second

expression of each clause)
e the last operand in an and or an or expression
e the last operand in a begin expression’s body
e the last operand in a let expression’s body

For example, in the expression (begin (+ 2 3) (- 2 3) (x 2 3)), (x 2 3)isa

tail call because it is the last operand expression to be evaluated.

Questions

For each of the following functions, identify whether it contains a recursive call in

a tail context. Also indicate if it uses a constant number of frames.

(define (question-b x y)
Af =x0) y
(question-b (- x 1) (+ vy x))))

(define (question-c x y)
if G xy)
(question-c (- y 1) x)
(question-c (+ x 10) y)))

(define (question-d n)
(if (question-d n)
(question-d (- n 1))
(question-d (+ n 10))))

(define (question-e n)
(cond ((=n @) 1)
((question-e (- n 1)) (question-e (- n 2)))
(else (begin (print 2) (question-e (- n 3))))))

Macros € Tail Calls 3

1.2 Write a tail recursive function that takes in a Scheme list and returns the numerical

sum of all values in the list. You can assume that the list contains only numbers
(no nested lists).

(define (sum 1lst)

1.3 Write a tail recursive function that returns the nth fibonacci number. We define
fib(0) = 0 and fib(1) = 1.

(define (fib n)

(define (fib-sofar)
(if

(fib-sofar)

(fib-sofar))

4 Macros & Tail Calls

2 Extra Question

2.1 Write a tail recursive function that takes in a number and a sorted list. The function

returns a sorted copy with the number inserted in the correct position.
(a) Begin by writing a tail recursive function that reverses a list.

(define (reverse 1lst)
(define (reverse-sofar lst lst-sofar)

(if (null? 1st)

(b) Next, write a tail recursive function that concatenates two lists together. You

may use reverse.

(define (append a b)
(define (rev-append-tail a b)

(if (null? a)

(¢) Finally, implement insert. You may use reverse and append.

(define (insert n lst)
(define (rev-insert lst rev-1st)

(cond ((null? 1st)

((> (car 1st) n)

(else

))

))

)

Macros € Tail Calls 5

3 M&CI‘OS

So far we’ve been able to define our own procedures in Scheme using the define spe-
cial form. When we call these procedures, we have to follow the rules for evaluating

call expressions, which involve evaluating all the operands.

We know that special form expressions do not follow the evaluation rules of call
expressions. Instead, each special form has its own rules of evaluation, which may
include not evaluating all the operands. Wouldn't it be cool if we could define
our own special forms where we decide which operands are evaluated? Consider
the following example where we attempt to write a function that evaluates a given

expression twice:

scm> (define (twice f) (begin f f))
twice

scm> (twice (print 'woof))

woof

Since twice is a regular procedure, a call to twice will follow the same rules of
evaluation as regular call expressions; first we evaluate the operator and then we
evaluate the operands. That means that woof was printed when we evaluated the
operand (print ’woof). Inside the body of twice, the name f is bound to the value
undefined, so the expression (begin f f) does nothing at all!

The problem here is clear: we need to prevent the given expression from evaluating
until we're inside the body of the procedure. This is where the define-macro special

form, which has identical syntax to the regular define form, comes in:

scm> (define-macro (twice f) (list 'begin f f))
twice

define-macro allows us to define what’s known as a macro, which is simply a way
for us to combine unevaluated input expressions together into another expression.
When we call macros, the operands are not evaluated, but rather are treated as
Scheme data. This means that any operands that are call expressions or special

form expression are treated like lists.

If we call (twice (print ’woof)), f will actually be bound to the list (print
"woof) instead of the value undefined. Inside the body of define-macro, we can
insert these expressions into a larger Scheme expression. In our case, we would want

a begin expression that looks like the following:

(begin (print 'woof) (print 'woof))

As Scheme data, this expression is really just a list containing three elements: begin
and (print ’woof) twice, which is exactly what (list ’begin f f) returns. Now,
when we call twice, this list is evaluated as an expression and (print ’woof) is

evaluated twice.

scm> (twice (print 'woof))
woof
woof

6 Macros & Tail Calls

To recap, macros are called similarly to regular procedures, but the rules for eval-
uating them are different. We evaluated lambda procedures in the following way:

1. Evaluate operator

2. Evaluate operands

3. Apply operator to operands, evaluating the body of the procedure
However, the rules for evaluating calls to macro procedures are:

1. Evaluate operator

2. Apply operator to unevaluated operands

3. Evaluate the expression returned by the macro in the frame it was called in.

Quasiquoting

Recall that the quote special form prevents the Scheme interpreter from executing
a following expression. We saw that this helps us create complex lists more easily
than repeatedly calling cons or trying to get the structure right with list. It seems
like this form would come in handy if we are trying to construct complex Scheme

expressions with many nested lists.
Consider that we rewrite the twice macro as follows:

(define-macro (twice f)
"(begin f f))

This seems like it would have the same effect, but since the quote form prevents
any evaluation, the resulting expression we create would actually be (begin f f),

which is not what we want.

The quasiquote allows us to construct literal lists in a similar way as quote, but
also lets us specify if any sub-expression within the list should be evaluated.

At first glance, the quasiquote (which can be invoked with the backtick * or the

’

quasiquote special form) behaves exactly the same as ’ or quote. However, using
quasiquotes gives you the ability to unquote (which can be invoked with the comma
, or the unquote special form). This removes an expression from the quoted context,

evaluates it, and places it back in.

By combining quasiquotes and unquoting, we can often save ourselves a lot of trouble

when building macro expressions.
Here is how we could use quasiquoting to rewrite our previous example:

(define-macro (twice f)
*(begin ,f ,f))

scm> (define a 1)
a

scm> '(cons a nil)
(cons a nil)

scm> “(cons a nil)
(cons a nil)
scm> “(cons ,a nil)
(cons 1 nil)

Macros € Tail Calls 7

Questions

3.1 Write a macro that takes an expression and returns a parameter-less lamba proce-

dure with the expression as its body

(define-macro (make-lambda expr)

scm> (make-lambda (print 'hi))

(lambda () (print (quote hi)))

scm> (make-lambda (/ 1 0))

(lambda () (/ 1 9))

scm> (define print-3 (make-lambda (print 3)))
print-3

scm> (print-3)

3

3.2 Write a macro that takes an expression and a number n and repeats the expression
n times. For example, (repeat-n expr 2) should behave the same as (twice expr).
Note that it’s possible to pass in a combination as the second argument (e.g. (+ 1
2)) as long as it evaluates to a number. Be sure that you evaluate this expression

in your macro so that you don’t treat it as a list.

Complete the implementation below, making use of the replicate function given
below. The replicate function takes in a value x and a number n and returns a

list with x repeated n times.

(define (replicate x n)
(if (= n @) nil
(cons x (replicate x (- n 1)))))

(define-macro (repeat-n expr n)

scm> (repeat-n (print '(resistance is futile)) 3)

(resistance is futile)

(resistance is futile)

(resistance is futile)

scm> (repeat-n (print (+ 3 3)) (+ 1 1)) ; Pass a call expression in as n
6

6

8 Macros & Tail Calls

3.3 Write a macro that takes in two expressions and or’s them together (applying short-
circuiting rules). However, do this without using the or special form. You may also
assume the name v1 doesn’t appear anywhere outside of our macro. Fill in the

implementation below.

(define-macro (or-macro exprl expr2)

“(let ((v1))

(if

)

scm> (or-macro (print 'bork) (/ 1 0))
bork

scm> (or-macro (=1 0) (+ 1 2))

3

	Tail-Call Optimization
	Extra Question
	Macros

