
CS 61A Linked Lists, Interfaces, and Trees
Summer 2019 Discussion 7: July 25, 2019

1 Linked Lists
There are many different implementations of sequences in Python. Today, we’ll

explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value

and the rest of the linked list.

To check if a linked list is an empty linked list, compare it against the class attribute

Link.empty:

if link is Link.empty:

print('This linked list is empty!')

else:

print('This linked list is not empty!')

Implementation
class Link:

empty = ()

def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)

self.first = first

self.rest = rest

def __repr__(self):

if self.rest:

rest_str = ', ' + repr(self.rest)

else:

rest_str = ''

return 'Link({0}{1})'.format(repr(self.first), rest_str)

def __str__(self):

string = '<'

while self.rest is not Link.empty:

string += str(self.first) + ' '

self = self.rest

return string + str(self.first) + '>'

2 Linked Lists, Interfaces, and Trees

Questions
1.1 Write a function that takes in a Python list of linked lists and multiplies them

element-wise. It should return a new linked list.

If not all of the Link objects are of equal length, return a linked list whose length is

that of the shortest linked list given. You may assume the Link objects are shallow

linked lists, and that lst of lnks contains at least one linked list.

def multiply_lnks(lst_of_lnks):

"""

>>> a = Link(2, Link(3, Link(5)))

>>> b = Link(6, Link(4, Link(2)))

>>> c = Link(4, Link(1, Link(0, Link(2))))

>>> p = multiply_lnks([a, b, c])

>>> p.first

48

>>> p.rest.first

12

>>> p.rest.rest.rest is Link.empty

True

"""

1.2 Write a function that takes a sorted linked list of integers and mutates it so that

all duplicates are removed.

def remove_duplicates(lnk):

"""

>>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))

>>> remove_duplicates(lnk)

>>> lnk

Link(1, Link(5))

"""

Linked Lists, Interfaces, and Trees 3

2 Interfaces
In computer science, an interface is a shared set of attributes, along with a spec-

ification of the attributes’ behavior. For example, an interface for vehicles might

consist of the following methods:

• def drive(self): Drives the vehicle if it has stopped.

• def stop(self): Stops the vehicle if it is driving.

Data types can implement the same interface in different ways. For example, a Car

class and a Train can both implement the interface described above, but the Car

probably has a different mechanism for drive than the Train.

The power of interfaces is that other programs don’t have to know how each data

type implements the interface – only that they have implemented the interface. The

following travel function can work with both Cars and Trains:

def travel(vehicle):

while not at_destination():

vehicle.drive()

vehicle.stop()

Magic Methods
Python defines many interfaces that can be implemented by user-defined classes.

For example, the interface for arithmetic consists of the following methods:

• def add (self, other): Allows objects to do self + other.

• def sub (self, other): Allows objects to do self - other.

• def mul (self, other): Allows objects to do self * other.

In addition, there is also an interface for sequences:

• def len (self): Allows objects to do len(self).

• def getitem (self, index): Allows objects to do self[i].

4 Linked Lists, Interfaces, and Trees

Questions
2.1 What would Python display?

class A():

def __init__(self, x):

self.x = x

def __repr__(self):

return self.x

def __str__(self):

return self.x * 2

class B():

def __init__(self):

print("boo!")

self.a = []

def add_a(self, a):

self.a.append(a)

def __repr__(self):

print(len(self.a))

ret = ""

for a in self.a:

ret += str(a)

return ret

>>> A("one")

>>> print(A("one"))

>>> repr(A("two"))

>>> b = B()

>>> b.add_a(A("a"))

>>> b.add_a(A("b"))

>>> b

>>> c = A("c")

>>> b.add_a(c)

>>> str(b)

Linked Lists, Interfaces, and Trees 5

2.2 Write the function is palindrome such that it works for any data type that imple-

ments the sequence interface.

Assume that the Link class has implemented the __len__ method and a _\

_getitem__ method which takes in integers.

def is_palindrome(seq):

""" Returns True if the sequence is a palindrome. A palindrome is a sequence

that reads the same forwards as backwards

>>> is_palindrome(Link("l", Link("i", Link("n", Link("k")))))

False

>>> is_palindrome(["l", "i", "n", "k"])

False

>>> is_palindrome("link")

False

>>> is_palindrome(Link.empty)

True

>>> is_palindrome([])

True

>>> is_palindrome("")

True

>>> is_palindrome(Link("a", Link("v", Link("a"))))

True

>>> is_palindrome(["a", "v", "a"])

True

>>> is_palindrome("ava")

True

"""

6 Linked Lists, Interfaces, and Trees

3 Trees
Recall the tree abstract data type: a tree is defined as having a label and some

branches. Previously, we implemented the tree abstraction using Python lists. Let’s

look at another implementation using objects instead:

class Tree:

def __init__(self, label, branches=[]):

for b in branches:

assert isinstance(b, Tree)

self.label = label

self.branches = branches

def is_leaf(self):

return not self.branches

Notice that with this implementation we can mutate a tree using attribute assign-

ment, which wasn’t possible in the previous implementation using lists.

>>> t = Tree(3, [Tree(4), Tree(5)])

>>> t.label = 5

>>> t.label

5

Linked Lists, Interfaces, and Trees 7

Questions
3.1 Assuming that every value in t is a number, let’s define average(t), which returns

the average of all the values in t.

def average(t):

"""

Returns the average value of all the nodes in t.

>>> t0 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])

>>> average(t0)

1.5

>>> t1 = Tree(8, [t0, Tree(4)])

>>> average(t1)

3.0

"""

8 Linked Lists, Interfaces, and Trees

3.2 Implement long paths, which returns a list of all paths in a tree with length at least

n. A path in a tree is a linked list of node values that starts with the root and ends

at a leaf. Each subsequent element must be from a child of the previous value’s

node. The length of a path is the number of edges in the path (i.e. one less than

the number of nodes in the path). Paths are listed in order from left to right. See

the doctests for some examples.

def long_paths(tree, n):

"""Return a list of all paths in tree with length at least n.

>>> t = Tree(3, [Tree(4), Tree(4), Tree(5)])

>>> left = Tree(1, [Tree(2), t])

>>> mid = Tree(6, [Tree(7, [Tree(8)]), Tree(9)])

>>> right = Tree(11, [Tree(12, [Tree(13, [Tree(14)])])])

>>> whole = Tree(0, [left, Tree(13), mid, right])

>>> for path in long_paths(whole, 2):

... print(path)

...

<0 1 2>

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 6 9>

<0 11 12 13 14>

>>> for path in long_paths(whole, 3):

... print(path)

...

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 11 12 13 14>

>>> long_paths(whole, 4)

[Link(0, Link(11, Link(12, Link(13, Link(14)))))]

"""

	Linked Lists
	Interfaces
	Trees

