
CS 61A Midterm Review, Iterators, and Generators

Summer 2019 Discussion 5: July 16, 2019

1 Midterm Review
1.1 Write a function that takes a list and returns a new list that keeps only the even-

indexed elements of lst and multiplies them by their corresponding index.

def even_weighted(lst):

"""

>>> x = [1, 2, 3, 4, 5, 6]

>>> even_weighted(x)

[0, 6, 20]

"""

return [_________________________________________________]

1.2 Write a function that takes in a list and returns the maximum product that can be

formed using nonconsecutive elements of the list. The input list will contain only

numbers greater than or equal to 1.

def max_product(lst):

"""Return the maximum product that can be formed using lst

without using any consecutive numbers

>>> max_product([10,3,1,9,2]) # 10 * 9

90

>>> max_product([5,10,5,10,5]) # 5 * 5 * 5

125

>>> max_product([])

1

"""



2 Midterm Review, Iterators, and Generators

1.3 Draw the environment diagram for the following code:

key = [1,6,1,2]

def ford(focus):

def frank(sinatra):

key = lambda key: sinatra(key)

return key

return frank(focus)(key[:])

result = ford(lambda x : x + [key])



Midterm Review, Iterators, and Generators 3

1.4 Complete redundant map, which takes a tree t and a function f, and applies f to

each node (2d) times, where d is the depth of the node. The root has a depth of 0.

We should be returning a new tree.

def redundant_map(t, f):

"""

>>> double = lambda x: x*2

>>> t = tree(1, [tree(1), tree(2, [tree(1, [tree(1)])])])

>>> print_tree(t)

1

1

2

1

1

>>> new_t = redundant_map(t, double)

>>> print_tree(new_t)

2

4

8

16

256

"""

new_label = ____________________________________________

new_f = _________________________________________________

____________ = ___________________________________________

return _____________________________



4 Midterm Review, Iterators, and Generators

2 Iterators and Generators
>>> a = [1, 2]

>>> a_iter = iter(a)

>>> next(a_iter)

1

>>> next(a_iter)

2

>>> next(a_iter)

StopIteration

An iterable is a data type which contains a collection of values which can be

processed one by one sequentially. Some examples of iterables we’ve seen include

lists, tuples, strings, and dictionaries. In general, any object that can be iterated

over in a for loop can be considered an iterable.

While an iterable contains values that can be iterated over, we need another type of

object called an iterator to actually retrieve values contained in an iterable. Calling

the iter function on an iterable will create an iterator over that iterable. Each

iterator keeps track of its position within the iterable. Calling the next function

on an iterator will give the current value in the iterable and move the iterator’s

position to the next value.

In this way, the relationship between an iterable and an iterator is analogous to the

relationship between a book and a bookmark - an iterable contains the data that is

being iterated over, and an iterator keeps track of your position within that data.

Once an iterator has returned all the values in an iterable, subsequent calls to next

on that iterable will result in a StopIteration exception. In order to be able to

access the values in the iterable a second time, you would have to create a second

iterator.

counts = [1, 2, 3]

for i in counts:

print(i)

items = iter(counts)

while True:

try:

i = next(items)

print(i)

except StopIteration:

break #Exit the while loop

One important application of iterables and iterators is the for loop. We’ve seen

how we can use for loops to iterate over iterables like lists and dictionaries.

This only works because the for loop implicitly creates an iterator using the built-

in iter function. Python then calls next repeatedly on the iterator, until it raises

StopIteration.

The code to the right shows how we can mimic the behavior of for loops using

while loops.

Note that most iterators are also iterables - that is, calling iter on them will return

an iterator. This means that we can use them inside for loops. However, calling

iter on most iterators will not create a new iterator - instead, it will simply return

the same iterator.

We can also iterate over iterables in a list comprehension or pass in an iterable to

the built-in function list in order to put the items of an iterable into a list.

In addition to the sequences we’ve learned, Python has some built-in ways to create

iterables and iterators. Here are a few useful ones:

• range(start, end) returns an iterable containing numbers from start to end-

1. If start is not provided, it defaults to 0.

• map(f, iterable) returns a new iterator containing the values resulting from

applying f to each value in iterable.

• filter(f, iterable) returns a new iterator containing only the values in

iterable for which f(value) returns True.



Midterm Review, Iterators, and Generators 5

Questions
2.1 What would Python display? If a StopIteration Exception occurs, write StopIteration,

and if another error occurs, write Error.

>>> lst = [6, 1, "a"]

>>> next(lst)

>>> lst_iter = iter(lst)

>>> next(lst_iter)

>>> next(lst_iter)

>>> next(iter(lst))

>>> [x for x in lst_iter]

Generators
>>> def gen_naturals():

... current = 0

... while True:

... yield current

... current += 1

>>> gen = gen_naturals()

>>> gen

<generator object gen at ...>

>>> next(gen)

0

>>> next(gen)

1

A generator function is a special kind of Python function that uses a yield

statement instead of a return statement to report values. When a generator

function is called, it returns a generator object, which is a type of iterator. To the

right, you can see a function that returns an iterator over the natural numbers.

The yield statement is similar to a return statement. However, while a return

statement closes the current frame after the function exits, a yield statement causes

the frame to be saved until the next time next is called, which allows the generator

to automatically keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues

until the next yield statement or the end of the function. A generator function can

have multiple yield statements.

Including a yield statement in a function automatically tells Python that this

function will create a generator. When we call the function, it returns a generator

object instead of executing the body. When the generator’s next method is called,

the body is executed until the next yield statement is executed.



6 Midterm Review, Iterators, and Generators

>>> square = lambda x: x*x

>>> def many_squares(s):

... for x in s:

... yield square(x)

... yield from map(square, s)

...

>>> list(many_squares([1, 2, 3]))

[1, 4, 9, 1, 4, 9]

When yield from is called on an iterator, it will yield every value from that iter-

ator. It’s similar to doing the following:

for x in an_iterator:

yield x

The example to the right demonstrates different ways of computing the same result.

Questions
2.1 What would Python display? If a StopIteration Exception occurs, write StopIteration,

or if another error occurs, write Error.

>>> def weird_gen(x):

... if x % 2 == 0:

... yield x * 2

... else:

... yield x

... yield from weird_gen(x - 1)

>>> next(weird_gen(2))

>>> list(weird_gen(3))

>>> def greeter(x):

... while x % 2 != 0:

... print('hello!')

... yield x

... print('goodbye!')

>>> greeter(5)

>>> gen = greeter(5)

>>> next(gen)

>>> next(gen)


	Midterm Review
	Iterators and Generators

