
CS 61A Recursion & Tree Recursion
Summer 2019 Discussion 3: July 9, 2019

1 Recursion
A recursive function is a function that is defined in terms of itself. A good

example is the factorial function. Although we haven’t finished defining

factorial, we are still able to call it since the function body is not evaluated

until the function is called. Note that when n is 0 or 1, we just return 1.

This is known as the base case, and it prevents the function from infinitely

recursing. Now we can compute factorial(2) in terms of factorial(1),

and factorial(3) in terms of factorial(2), and factorial(4) – well, you

get the idea.

There are three common steps in a recursive definition:

1. Figure out your base case: The base case is usually the simplest

input possible to the function. For example, factorial(0) is 1 by

definition. You can also think of a base case as a stopping condition

for the recursion. If you can’t figure this out right away, move on to

the recursive case and try to figure out the point at which we can’t

reduce the problem any further.

2. Make a recursive call with a simpler argument: Simplify your

problem, and assume that a recursive call for this new problem will

simply work. This is called the “leap of faith”. For factorial, we

reduce the problem by calling factorial(n-1).

3. Use your recursive call to solve the full problem: Remember

that we are assuming the recursive call works. With the result of the

recursive call, how can you solve the original problem you were asked?

For factorial, we just multiply (n− 1)! by n.

Note: One way to go understand recursion is to separate out two things: “internal

correctness” and not running forever (known as “halting”).

A recursive function is internally correct if it is always does the right thing assum-

ing that every recursive call does the right thing. For example, the same factorial

function from above but with no base case is internally correct, but does not halt.

A recursive function is correct if and only if it is both internally correct and halts; but

you can check each property separately. The “recursive leap of faith” is temporarily

placing yourself in a mindset where you only check internal correctness.



2 Recursion & Tree Recursion

Questions
1.1 Write a function that takes two numbers m and n and returns their product.

Assume m and n are positive integers. Use recursion, not mul or *!

Hint: 5*3 = 5 + 5*2 = 5 + 5 + 5*1.

For the base case, what is the simplest possible input for multiply?

For the recursive case, what does calling multiply(m - 1, n) do? What

does calling multiply(m, n - 1) do? Do we prefer one over the other?

def multiply(m, n):

"""

>>> multiply(5, 3)

15

"""



Recursion & Tree Recursion 3

1.2 Draw an environment diagram for the following code:

def rec(x, y):

if y > 0:

return x * rec(x, y - 1)

return 1

rec(3, 2)

Bonus question: what does this function do?

Note: This problem is meant to help you understand what really goes on

when we make the ”recursive leap of faith”. However, when approaching or

debugging recursive functions, you should avoid visualizing them in this way.



4 Recursion & Tree Recursion

1.3 In discussion 1, we implemented the function is prime, which takes in a

positive integer and returns whether or not that integer is prime, iteratively.

Now, let’s implement it recursively! As a reminder, an integer is considered

prime if it has exactly two unique factors: 1 and itself.

def is_prime(n):

"""

>>> is_prime(7)

True

>>> is_prime(10)

False

>>> is_prime(1)

False

"""

def prime_helper(____________________):

if ________________________:

________________________

elif ________________________:

________________________

else:

________________________

return __________________________



Recursion & Tree Recursion 5

1.4 (Optional)

Define a function make fn repeater which takes in a one-argument function

f and an integer x. It should return another function which takes in one

argument, another integer. This function returns the result of applying f to

x this number of times.

Make sure to use recursion in your solution.

def make_func_repeater(f, x):

"""

>>> incr_1 = make_func_repeater(lambda x: x + 1, 1)

>>> incr_1(2) #same as f(f(x))

3

>>> incr_1(5)

6

"""

def repeat(___________________):

if _______________________:

return __________________

else:

return __________________

return _________________________



6 Recursion & Tree Recursion

2 Tree Recursion
Consider a function that requires more than one recursive call. A simple

example is the recursive fibonacci function:

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

This type of recursion is called tree recursion, because it makes more than

one recursive call in its recursive case. If we draw out the recursive calls, we

see the recursive calls in the shape of an upside-down tree:

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, prob-

lems that are naturally solved using tree recursive procedures are generally

difficult to write iteratively. It is sometimes the case that a tree recursive

problem also involves iteration: for example, you might use a while loop to

add together multiple recursive calls.

As a general rule of thumb, whenever you need to try multiple possibilities

at the same time, you should consider using tree recursion.



Recursion & Tree Recursion 7

Questions
2.1 You want to go up a flight of stairs that has n steps. You can either take 1

or 2 steps each time. How many different ways can you go up this flight of

stairs? Write a function count_stair_ways that solves this problem. Assume

n is positive.

Before we start, what’s the base case for this question? What is the simplest

input?

What do count_stair_ways(n - 1) and count_stair_ways(n - 2) repre-

sent?

Use those two recursive calls to write the recursive case:

def count_stair_ways(n):



8 Recursion & Tree Recursion

2.2 Consider a special version of the count_stairways problem, where instead

of taking 1 or 2 steps, we are able to take up to and including k steps at

a time.

Write a function count_k that figures out the number of paths for this sce-

nario. Assume n and k are positive.

def count_k(n, k):

"""

>>> count_k(3, 3) # 3, 2 + 1, 1 + 2, 1 + 1 + 1

4

>>> count_k(4, 4)

8

>>> count_k(10, 3)

274

>>> count_k(300, 1) # Only one step at a time

1

"""


	Recursion
	Tree Recursion

