
CS 61A Higher Order Functions
Summer 2019 Discussion 2: July 2, 2019

1 Higher Order Functions
HOFs in Environment Diagrams
Recall that an environment diagram keeps track of all the variables that

have been defined and the values they are bound to. However, values are

not necessarily only integers and strings. Environment diagrams can model

more complex programs that utilize higher order functions.

def add_num(x):

return lambda y: x + y

add_two = add_num(2)

add_two(3)

Lambdas are represented similiarly to functions in environment diagrams,

but since they lack instrinsic names, the lambda symbol (λ) is used instead.

The parent of any function (including lambdas) is always the frame in which

the function is defined. It is useful to include the parent in environment

diagrams in order to find variables that are not defined in the current frame.

In the previous example, when we call add two (which is really the lambda

function), we need to know what x is in order to compute x + y. Since x is

not in the frame f2, we look at the frame’s parent, which is f1. There, we

find x is bound to 2.

As illustrated above, higher order functions that return a function have their

return value represented with a pointer to the function object.



2 Higher Order Functions

A Note on Lambda Expressions
A lambda expression evaluates to a function, called a lambda function. In

the code above, lambda y: x + y is a lambda expression, and can be read

as a function that takes in one parameter y and returns x + y.

A lambda expression by itself evaluates to a function but does not bind it to

a name. Also note that the return expression of this function is not evaluated

until the lambda is called. This is similar to how defining a new function

using a def statement does not execute the functions body until it is later

called.

>>> what = lambda x : x + 5

>>> what

<function <lambda> at 0xf3f490>

Unlike def statements, lambda expressions can be used as an operator or

an operand to a call expression. This is because they are simply one-line

expressions that evaluate to functions.

>>> (lambda y: y + 5)(4)

9

>>> (lambda f, x: f(x))(lambda y: y + 1, 10)

11



Higher Order Functions 3

Questions
1.1 Draw the environment diagram that results from executing the code below.

1 def curry2(h):

2 def f(x):

3 def g(y):

4 return h(x, y)

5 return g

6 return f

7 make_adder = curry2(lambda x, y: x + y)

8 add_three = make_adder(3)

9 add_four = make_adder(4)

10 five = add_three(2)



4 Higher Order Functions

1.2 Write curry2 as a lambda function

1.3 Draw the environment diagram that results from executing the code below.

1 n = 7

2

3 def f(x):

4 n = 8

5 return x + 1

6

7 def g(x):

8 n = 9

9 def h():

10 return x + 1

11 return h

12

13 def f(f, x):

14 return f(x + n)

15

16 f = f(g, n)

17 g = (lambda y: y())(f)



Higher Order Functions 5

1.4 The following question is extremely difficult. Something like this would not

appear on the exam. Nonetheless, it’s a fun problem to try.

Draw the environment diagram that results from executing the code below.

Note that using the + operator with two strings results in the second string

being appended to the first. For example "C" + "S" concatenates the two

strings into one string "CS"

1 y = "y"

2 h = y

3 def y(y):

4 h = "h"

5 if y == h:

6 return y + "i"

7 y = lambda y: y(h)

8 return lambda h: y(h)

9 y = y(y)(y)



6 Higher Order Functions

Writing Higher Order Functions

1.5 Write a function that takes in a function cond and a number n and prints

numbers from 1 to n where calling cond on that number returns True.

def keep_ints(cond, n):

"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> keep_ints(is_even, 5)

2

4

"""

1.6 Write a function similar to keep_ints like before, but now it takes in a

number n and returns a function that has one parameter cond. The returned

function prints out numbers from 1 to n where calling cond on that number

returns True.

def make_keeper(n):

"""Returns a function which takes one parameter cond and prints out

all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> make_keeper(5)(is_even)

2

4

"""



Higher Order Functions 7

1.7 Write a function and add that takes a one-argument function f and a number

n as arguments. It should return a function that takes one argument, and

does the same thing as the function f, except also adds n to the result.

def and_add(f, n):

"""Return a new function. This new function takes an

argument x and returns f(x) + n.

>>> def square(x):

... return x * x

>>> new_square = and_add(square, 3)

>>> new_square(4) # 4 * 4 + 3

19

"""


	Higher Order Functions

